
Magnetic Chucks

マグネットチャックには、**電磁チャック、永磁チャック、永電磁チャック**等の種類があり、 それぞれに機能的な特長を有しています。

工作機器における加工作業に際し、ワークのチャッキングにマグネットを応用することは、20世紀の初頭頃から始められており、一定の歴史を持っています。とりわけ、最近の技術開発の進展は、マグネットチャックを単に研削盤対応の範囲から、マシニングセンタ・旋盤・フライス盤などの重切削作業への対応も可能な、強力なものへの進化を可能にし、その需要範囲を広げて来ました。今日、金型や放電加工機分野向けなどへもその用途は拡大されつつあり、高精度加工への技術的対応もとりこんで、今後もますます重要性が高まる製品分野といえます。

また、当社ではマグネットチャックだけでなく、さまざまな素材の研削加工に対応可能な 非磁性材料用のチャックもラインアップしており、お客様の多様なニーズにお役立て頂 ける製品内容となっております。

■用途別チャック分類表

■各種チャックの特長と概略

電磁 チャック

- ワークの着脱がスイッチ操作で可能。
- 機械と連動しての自動化が容易。
- 吸着力の強弱調整が容易。
- チャックの大形化が容易。

水冷式 電磁 チャック

- 水冷効果で通電発熱を抑制する構造の電磁チャック。
- 高精度作業向けで、しかも電磁チャックの特長を生かすことが可能。
- ドライ (乾式) 研削加工に最適。 (ワーク自体の熱も吸収します)

永電磁 チャック

- ワークの着脱がスイッチ操作で可能。
- 電気は着脱時のみ瞬間的に使う省エネタイプ。
- 通電発熱による熱変位がなく、高精度が追求できます。
- 吸着中に万一電源の故障や停電が発生しても吸着力は変化しません。

永磁 チャック

- 電源を必要としないので省エネに向き、停電等による不安もなく、吸着状 態を長時間保持可能。
- 発熱せず温度上昇による熱変位がありません。

サインバー チャック

プロメルタ

システム

● 高精度研削や検査用のサインバー付きマグネットチャックです。

● 電磁式、電磁水冷式、永磁式、永電磁式など機種が豊富です。

● 総合精度0.005mm以内の高精度仕上げです。

真空 ● 大気圧を応用したチャックです。

チャック ● 非磁性材料を吸着保持します。

- 加工物固定剤によりワークを専用チャックに固定。
- 非磁性材料を固定します。

■電磁チャックの種類

種類	形式	用途	適用機種	備考		
T溝付き	KEZX	美切别 克油切别田	マシニングセンタ			
超強力形	KETZ	· 重切削、高速切削用 	フライス盤			
強力波形	KETN	切削用	大形プラノミラ	KEZX		
横細目形	KESL	研削、軽切削、ベルト研削用	フライス研削盤、量産鋸刃研削盤	KETZ		
エアーアップ形	KETB	研削用				
標準角形	KET	研削、軽切削用		KEC-AS		
マイクロピッチ	KETW	薄物研削用	研削盤			
可傾形	KET-U	成形研削用				
連結可傾形	KET-UT	大物加工物、刃物の角度研削用				
丸形	KEC-AR	リングポール:研削用	研削盤、旋盤、ロータリ研削盤			
プ いじ	KEC-AS	スターポール:切削用	ターニング・マシン(立正面盤)			
水冷式	KCT/KCT-U	研削用	研削盤			
	KCC	研削、ロータリ研削用	研削盤、ロータリ研削盤	кст-и ксс		

■永磁チャックの種類

種類	形式	用途	適用機種	備考				
強力形	RMA	切削用・重切削用	フライス盤					
小物、薄物用	RMAW	小物・薄物ワークの軽切削、研削用	研削盤、フライス盤					
標準形	RMT	薄物から厚物まで軽切削、研削用	研削盤、放電加工機					
角形マイクロピッチ	RMWH	小形・薄物ワークの密集整列研削、 液中保持	研削盤、放電加工機	RMA				
可傾形	RMT-U	成形研削用	研削盤					
強力丸形	RMA-C	切削用	施盤	RMWH RMT-U				
スターポール丸形	RMC-X							
標準丸形	RMC	軽切削、研削用	研削盤、旋盤					
小物、薄物用	RMAW-C							
丸形マイクロピッチ	RMCW	薄物から厚物までの万能研削用		RMC				
超薄形	RTH	軽研削、高速研削	研削盤	RMCI				
超硬用	CMR	超硬等の弱磁性体研削用		RMC-X				
噴流穴付角形	RMT-ED							
噴流穴付丸形	RMC-ED	防水性を強化、放電加工における ワークの固定	放電加工機					
角形マイクロピッチ	RMWH-ED)) SIEINL		RMWH-ED RTH				

■永雷磁チャックの種類

71-2-1447							
種類	形式	用途	適用機種	備考			
強力形	EP-Q	金打出 打出用	フライス、マニシングセンタ				
消磁機能付き	EP-D	生奶的、奶的用	77170 (= 227 (27)				
角形	EPT	研削用	研削盤				
マイクロピッチ	EPTW	薄物研削用		EP-Q EPTW			
可傾形	EPZ-U	成形研削用	旋盤、ターニング盤	EPC-AST			
丸形	EPC	旋削、研削	円筒研削盤、ロータリ研削盤	EPT EPZ-U			

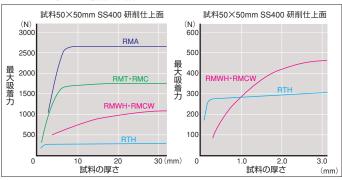
Magnetic Chucks

マグネットチャックの吸着力

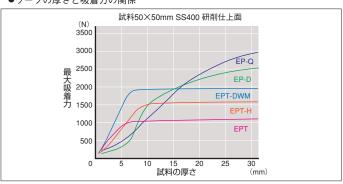

吸着力は、マグネットチャックの種類、ワークの材質、厚さや吸着面積などの他、質量の形状分布、吸着面の粗さによっても大きく違ってまいります。ここに掲示のグラフは代表的な例を示したものですが、おおよその傾向値を示すものとして参考にしてください。個々のチャックでは若干の差異があります。なお加工物は必ずセパレータを挟んでN・S両極にまたがるように吸着位置を定めて下さい。

吸着力と磁極間隔(ピッチ)

ワークに適したピッチの選定には絶対的な基準はありません。しかし、一般的な目安としては、ピッチの2倍~4倍ぐらいの厚みのワークが最も吸着条件が良いといえます。

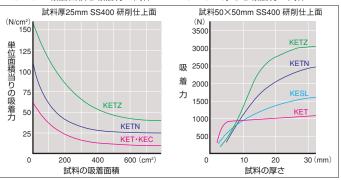

また、強く吸着するためにはN極とS極にまたがることが必要なため、ワーク吸着面はピッチの3倍以上の辺の広がりを必要とします。

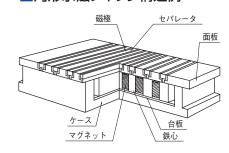
■角形雷磁チャック構造例


■吸着力の傾向値データ《永磁チャック》(1N≒0.1kgf)

●ワークの厚さと吸着力の関係

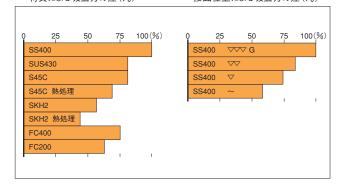
■吸着力の傾向値データ《永電磁チャック》(1N≒0.1kgf)


●ワークの厚さと吸着力の関係


■吸着力の傾向値データ《電磁チャック》(1N≒0.1kgf)

●ワークの吸着面積と吸着力の関係

●ワークの厚さと吸着力の関係


■角形永磁チャック構造例

■材質等と吸着力の相対的関係《チャック全般》

●材質による吸着力の差(%)

●接面仕上による吸着力の差(%)

使用研削油剤の選定

チャック作業面のセパレータ部分には、黄銅・樹脂などが使用されていますのでこれらに対して腐食性の低い研削油を選定して下さい。詳しくは研削液メーカーにご相談下さい。

吸着面構造部材の結着に、環境負荷物質として 一般的に使用されているハンダを廃止し、特殊 樹脂を使用しているマグネットチャックです。

※吸着力の傾向値データは、代表的な機種の参考値であり 保証値ではありません。

※巻末の FAX 連絡票(引合資料)もご利用下さい。

■規格

電磁チャックの品質上の基準は、寸法上の精度 (平面度/平行度)、吸着力、電気的性能(耐 電圧/絶縁抵抗/温度上昇限度)そして耐水 性に関し、その試験方法を含めて右記の通り定 めています。

電磁チャックの規格

							(mm	
面板の長さまたは直径			300以下	300を超え600以下	600を超え900以下	900を超えるもの	表面粗さ:6.3Sとする。	
平	面	度	0.01	0.015	0.02	0.025	取付面:中高であっては	
平	行	度	0.02	0.03	0.04	0.05	ならない。	
吸	着	カ	チャック面板上における吸着力は、平均98.1N(10kgf)以上で、最も弱いところで49N(5kgf)以上でなければならない。					
耐	電	圧	充電部と本体との間で絶縁破壊を起こしてはならない。(AC1500V 1分間)					
絶	縁 抵	抗	絶縁抵抗は、5MΩ以上でなければならない。(500V絶縁抵抗計による)					
温	度 上	昇	チャック作業面の温度上昇は、15℃以下でなければならない。(通電3時間)					
耐	水	性	チャックを水中に入れた場合、内部に水が侵み込んだり、絶縁が低下してはならない。					